Plasma Physics 1,2

HomeSyllabus Lectures Readings

Plasma physics is the study of a state of matter comprising charged particles. Plasmas are usually created by heating a gas until the electrons become detached from their parent atom or molecule. This so-called ionization can also be achieved using high-power laser light or microwaves. Plasmas are found naturally in stars and in space.

Plasma and ionized gases have properties and display behaviours unlike those of the other states, and the transition between them is mostly a matter of nomenclature and subject to interpretation. Based on the temperature and density of the environment that contains a plasma, partially ionized or fully ionized forms of plasma may be produced. Neon signs and lightning are examples of partially ionized plasmas. The Earth’s ionosphere is a plasma and the magnetosphere contains plasma in the Earth’s surrounding space environment. The interior of the Sun is an example of fully ionized plasma, along with the solar corona and stars.

Positive charges in ions are achieved by stripping away electrons orbiting the atomic nuclei, where the total number of electrons removed is related to either increasing temperature or the local density of other ionized matter. This also can be accompanied by the dissociation of molecular bonds, though this process is distinctly different from chemical processes of ion interactions in liquids or the behaviour of shared ions in metals. The response of plasma to electromagnetic fields is used in many modern technological devices, such as plasma televisions or plasma etching.

Plasma may be the most abundant form of ordinary matter in the universe, although this hypothesis is currently tentative based on the existence and unknown properties of dark matter. Plasma is mostly associated with stars, extending to the rarefied intracluster medium and possibly the intergalactic regions.

Share this Page